Detecting Image Spam Using Image Texture Features
نویسندگان
چکیده
منابع مشابه
Detecting Image Spam Using Image Texture Features
Filtering image email spam is considered to be a challenging problem because spammers keep modifying the images being used in their campaigns by employing different obfuscation techniques. Therefore, preventing text recognition using Optical Character Recognition (OCR) tools and imposing additional challenges in filtering such type of spam. In this paper, we propose an image spam filtering tech...
متن کاملImage Categorization Using Texture Features
A method for finding all images from the same category as a given query image (termed categorization) using texture features is presented. The hypothesis that two images that are similar in texture are likely to belong to the same category, is examined. A new texture feature termed N M -gram is presented. It is based on theN -gram technique that is commonly used for text similarity. The process...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملImproving Image Spam Filtering Using Image Text Features
In this paper we consider the approach to image spam filtering based on using image classifiers aimed at discriminating between ham and spam images, previously proposed by other authors. In previous works this approach was implemented using “generic” image features. In this paper we show that its effectiveness can be improved by using specific features related to the graphical characteristics o...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Information Security Research
سال: 2013
ISSN: 2042-4639
DOI: 10.20533/ijisr.2042.4639.2013.0040